Meteorological Applications (Jul 2021)

Comprehensive physics testing and adaptive weather research and forecasting physics for day‐ahead solar forecasting

  • Robert Huva,
  • Guiting Song,
  • Xiaohui Zhong,
  • Yangyang Zhao

DOI
https://doi.org/10.1002/met.2017
Journal volume & issue
Vol. 28, no. 4
pp. n/a – n/a

Abstract

Read online

Abstract Numerical weather prediction (NWP) models, which attempt to simulate the full state of the atmosphere, come with many options for dealing with processes that are unable to be explicitly resolved by the model. These model parameterizations are an ongoing area of research in atmospheric science. However, with continuous contributions from the research community and subsequent upgrade of the NWP codes, there are often many options for each unresolved process—leaving the user confronted with potentially thousands of ways to configure the model. We use the weather research and forecasting (WRF) model to forecast global horizontal irradiance (GHI) and undertake the task of narrowing down these options for a location in Qinghai, China. We show that optimizing the configuration of the WRF model based on the type of day (sunny, partly cloudy, or cloudy) is 13.6% better than using a single best configuration for all types of days. We also show that this performance improvement holds true for a longer 3‐month test period (17.8% improvement).

Keywords