Biomolecules (Jun 2025)
Proteomic Study Between Interstitial Channels Along Meridians and Adjacent Areas in Mini-Pigs
Abstract
Objective: This study explores the material basis and biological functions of meridian interstitial channels in mini-pigs proximal to the stomach meridian by analyzing differential proteomics between interstitial channels and adjacent non-interstitial channel tissues. Methods: Liquid chromatography–mass spectrometry (LC-MS) under data-dependent acquisition mode was employed to analyze and identify the proteome of subcutaneous connective tissues along the stomach meridian and adjacent tissues. SWATH MSALL method and omicsbean online analysis platforms were used for protein quantification and differential proteomic analysis. Differential proteins were subjected to Gene Ontology annotation and KEGG pathway analysis to understand their functions and biological processes. Combining traditional Chinese meridian theory with modern meridian research, proteins most relevant to meridian functions were selected, and their expression levels were assessed using Western blotting. Results: GO annotation and KEGG pathway analysis revealed differences in molecular functions, biological processes, and metabolic pathways among differential proteins. Most downregulated proteins were enzyme functional proteins involved in amino acid metabolism (GOT1), adenosine nucleotide balance conversion (AK1), and calcium ion-binding processes (ANXA6). Most upregulated proteins were structural proteins in the extracellular matrix—collagen proteins (COL3A1, COL6A1, COL6A3, COL6A6, COL12A1, COL14A1) and proteoglycans (DCN, BGN, FMOD)—involved in influencing and regulating collagen fiber generation and arrangement. Intriguingly, almost all differential proteins were associated with gastrointestinal diseases, implying a pathological correlation of differential proteins in the stomach meridian interstitial channel. Conclusions: The stomach meridian interstitial channels in mini-pigs show 72 differentially expressed proteins compared to adjacent tissues. These differences include the upregulation of structural proteins and downregulation of functional proteins, potentially forming the molecular biological basis for the structural and functional specificity of meridians.
Keywords