BMC Cancer (Apr 2025)
Integrated multi-omics reveal lactate metabolism-related gene signatures and PYGL in predicting HNSCC prognosis and immunotherapy efficacy
Abstract
Abstract Background Head and neck squamous cell carcinoma (HNSCC) treatment faces significant clinical challenges. Lactate metabolism plays a crucial role in the initiation of many cancers and the tumor microenvironment (TME). However, the prognostic significance of lactate metabolism-related genes (LMRGs) and the role of TME in HNSCC require further elucidation. Methods We built a prognostic multigene signature with LMRGs and systematically correlated the risk signature with immunological characteristics and immunotherapy efficacy. Next, a series of single-cell sequencing analyses were used to characterize lactate metabolism in TME. Finally, single-cell sequencing analysis, immunofluorescence analyses, and a series of in vitro experiments were used to explore the role of PYGL in HNSCC. Potential drugs targeting PYGL were screened using AutoDock 4.2. Results A prognostic multigene signature based on LMRGs was developed, which effectively stratified patients into high- and low-risk groups, with significant differences in overall survival (OS) and progression-free survival (PFS). Patients in the low-risk group exhibited reduced lactate metabolism, higher CD8 + T cell infiltration, and improved response to immunotherapy. Single-cell sequencing revealed that tumor cells had the most active lactate metabolism compared to other cells in the TME. PYGL, identified as the most critical prognostic gene, was highly expressed in tumor-associated macrophages and played a role in inhibiting M1 macrophage polarization. Knockdown of PYGL led to reduced lactate levels, and its expression was inversely correlated with CD8 + T cell infiltration. Furthermore, PYGL was involved in copper-dependent cell death, highlighting its potential as a therapeutic target. Drug screening identified elesclomol, which showed promising results in PYGL-knockdown cells. Conclusions The study established a robust LMRGs-based prognostic model that not only predicts patient survival but also correlates with the immune microenvironment in HNSCC. PYGL emerged as a key biomarker with significant implications for both prognosis and therapeutic intervention. Its role in regulating lactate metabolism and immune suppression suggests that targeting PYGL could enhance the efficacy of immunotherapies. This research provides a foundation for future clinical strategies aimed at improving outcomes in HNSCC by modulating the tumor’s metabolic and immune landscapes.
Keywords