Science and Technology of Advanced Materials (Jan 2012)
Design and preparation of stress-free epitaxial BaTiO3 polydomain films by RF magnetron sputtering
Abstract
Domain structures of BaTiO3 thick films grown on (100) SrTiO3 single-crystal substrates were engineered using an RF magnetron sputtering deposition process. By tuning the sputtering power and cooling rate and using an off-axis sputtering technique to prepare conducting perovskite oxide bottom electrode with heteroepitaxial quality, we have deposited epitaxial tetragonal single-domain and polydomain BaTiO3 films with a self-assembled three-domain architecture. The electrical properties and microstructure of the BaTiO3 films were characterized, and a c/a1/a2 cellular polydomain structure was clearly observed in as-grown films by optical microscopy. Such a polydomain structure was a consequence of a complete relaxation of misfit stresses of the film. Engineering of this self-assembled microstructure has great potential in providing large, field-tunable pyroelectric and electromechanical responses in next-generation microelectronic devices and micro-electro-mechanical systems (MEMS).