Systems and Soft Computing (Dec 2025)
A review of machine learning techniques for urban resilience research: The application and progress of different machine learning techniques in assessing and enhancing urban resilience
Abstract
Urban resilience evaluates systems’ capacities to prepare for, adapt to, absorb, and recover from disruptions. Evaluation frameworks incorporate metrics like recovery speed, adaptive ability, and absorptive capacity. Assessing critical infrastructure interdependencies is challenging yet vital to limit failure propagation. While static assessments, multi-layer frameworks, and software like Hazus are used, limitations persist. Machine learning often focuses on infrastructure data for recovery monitoring. A common workflow entails acquiring and organizing data, then applying supervised, unsupervised, or reinforcement learning models. Supervised learning uses labeled data while unsupervised learning detects patterns in unlabeled data. Reinforcement learning optimizes rewards through trial-and-error interactions. Machine learning assists in meeting intensifying urbanization and climate change challenges. Leveraging advances in sensors, IoT, and computing enables tasks like image labeling and semantic segmentation. The techniques facilitate resilience through real-time data analytics for informed decision-making and responsive disaster management.
Keywords