BMC Genomics (Jul 2025)

LMOD2 interaction with ACTC1 regulates myogenic differentiation

  • Kaiming Wang,
  • Caihong Liu,
  • Lei Yi,
  • Sui Liufu,
  • Wenwu Chen,
  • Xiaolin Liu,
  • Bohe Chen,
  • Xin Xu,
  • Jingwen Liu,
  • Xibing Liu,
  • Yulong Yin,
  • Haiming Ma

DOI
https://doi.org/10.1186/s12864-025-11897-z
Journal volume & issue
Vol. 26, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Skeletal muscle is the largest tissue in mammals, and it plays a crucial role in metabolism and homeostasis. Skeletal muscle development and regeneration consist of a series of carefully regulated changes in gene expression. Leiomodin2 (LMOD2) gene is specifically expressed in the heart and skeletal muscle. But the physiological functions and mechanisms of LMOD2 on skeletal muscle development are unknown. Results In this study, we examined the expression levels of the LMOD2 in porcine tissues and C2C12 cells. LMOD2 is mainly expressed in the heart, followed by skeletal muscle. The expression level of LMOD2 gradually decreased with skeletal muscle growth, but increased after injury. LMOD2 expression levels increased gradually with C2C12 cells proliferation and differentiation. In terms of function, the muscle fiber types were altered after LMOD2 was knocked out in C2C12 cells, MyHC-I and MyHC-2b were inhibited, whereas MyHC-2a and MyHC-2x were promoted. LMOD2 knockout has different effects on LMOD family, LMOD1 expression level was promoted, while LMOD3 was inhibited. Loss of LMOD2 suppressed cell viability and PAX7 protein expression. At the transcriptome level, proliferation-related genes and muscle contraction-related genes were respectively inhibited after LMOD2 knockout. In terms of molecular networks, a series of experiments have shown that MyoG is a transcription factor for LMOD2, while miR-335-3p can negatively regulate LMOD2 expression. We screened ACTC1 as a candidate interacting protein for LMOD2 using protein prediction software and RNA-seq, and Co-IP experiments confirmed the relationship between LMOD2 and ACTC1. In vivo, Lentivirus-mediated LMOD2 knockdown reduces muscle mass. LMOD2 knockdown inhibited MyHC-I mRNA expression, but had no effect on MyHC-2b. The protein expression of MyHC-I, MyHC-2x, and MyHC-2b was suppressed after LMOD2 knockdown. Conclusions Collectively, our data indicates that LMOD2 knockout inhibits myoblast proliferation and alters muscle fiber types. MyoG is a transcription factor for LMOD2, while miR-335-3p can negatively regulate LMOD2 expression. Moreover, LMOD2 and ACTC1 interact to regulate myogenic differentiation. Our study provides a new target for skeletal muscle development.

Keywords