Electronic Journal of Differential Equations (Oct 2007)
On the wave equations with memory in noncylindrical domains
Abstract
In this paper we prove the exponential and polynomial decays rates in the case $n > 2$, as time approaches infinity of regular solutions of the wave equations with memory $$ u_{tt}-Delta u+int^{t}_{0}g(t-s)Delta u(s)ds=0 quad mbox{in } widehat{Q} $$ where $widehat{Q}$ is a non cylindrical domains of $mathbb{R}^{n+1}$, $(nge1)$. We show that the dissipation produced by memory effect is strong enough to produce exponential decay of solution provided the relaxation function $g$ also decays exponentially. When the relaxation function decay polynomially, we show that the solution decays polynomially with the same rate. For this we introduced a new multiplier that makes an important role in the obtaining of the exponential and polynomial decays of the energy of the system. Existence, uniqueness and regularity of solutions for any $n ge 1$ are investigated. The obtained result extends known results from cylindrical to non-cylindrical domains.