BMJ Open Respiratory Research (Mar 2025)

Machine learning-based model for predicting all-cause mortality in severe pneumonia

  • Dong Wang,
  • Xinlou Li,
  • Yaping Lu,
  • Nan Song,
  • Zhao-Hui Tong,
  • Lianjun Gao,
  • Xuan Huang,
  • Jiachen Li,
  • Weichao Zhao,
  • Xuyan Li,
  • Zhuang Ai

DOI
https://doi.org/10.1136/bmjresp-2023-001983
Journal volume & issue
Vol. 12, no. 1

Abstract

Read online

Background Severe pneumonia has a poor prognosis and high mortality. Current severity scores such as Acute Physiology and Chronic Health Evaluation (APACHE-II) and Sequential Organ Failure Assessment (SOFA), have limited ability to help clinicians in classification and management decisions. The goal of this study was to analyse the clinical characteristics of severe pneumonia and develop a machine learning-based mortality-prediction model for patients with severe pneumonia.Methods Consecutive patients with severe pneumonia between 2013 and 2022 admitted to Beijing Chaoyang Hospital affiliated with Capital Medical University were included. In-hospital all-cause mortality was the outcome of this study. We performed a retrospective analysis of the cohort, stratifying patients into survival and non-survival groups, using mainstream machine learning algorithms (light gradient boosting machine, support vector classifier and random forest). We aimed to construct a mortality-prediction model for patients with severe pneumonia based on their accessible clinical and laboratory data. The discriminative ability was evaluated using the area under the receiver operating characteristic curve (AUC). The calibration curve was used to assess the fit goodness of the model, and decision curve analysis was performed to quantify clinical utility. By means of logistic regression, independent risk factors for death in severe pneumonia were figured out to provide an important basis for clinical decision-making.Results A total of 875 patients were included in the development and validation cohorts, with the in-hospital mortality rate of 14.6%. The AUC of the model in the internal validation set was 0.8779 (95% CI, 0.738 to 0.974), showing a competitive discrimination ability that outperformed those of traditional clinical scoring systems, that is, APACHE-II, SOFA, CURB-65 (confusion, urea, respiratory rate, blood pressure, age ≥65 years), Pneumonia Severity Index. The calibration curve showed that the in-hospital mortality in severe pneumonia predicted by the model fit reasonably with the actual hospital mortality. In addition, the decision curve showed that the net clinical benefit was positive in both training and validation sets of hospitalised patients with severe pneumonia. Based on ensemble machine learning algorithms and logistic regression technique, the level of ferritin, lactic acid, blood urea nitrogen, creatine kinase, eosinophil and the requirement of vasopressors were identified as top independent predictors of in-hospital mortality with severe pneumonia.Conclusion A robust clinical model for predicting the risk of in-hospital mortality after severe pneumonia was successfully developed using machine learning techniques. The performance of this model demonstrates the effectiveness of these techniques in creating accurate predictive models, and the use of this model has the potential to greatly assist patients and clinical doctors in making well-informed decisions regarding patient care.