Generation of Ultrabroad and Intense Supercontinuum in Mixed Multiple Thin Plates
Jing Li,
Wenjiang Tan,
Jinhai Si,
Zhen Kang,
Xun Hou
Affiliations
Jing Li
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Wenjiang Tan
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Jinhai Si
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Zhen Kang
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Xun Hou
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Supercontinuum (SC) generation using multiple thin plates is demonstrated with a femtosecond laser pulse. We propose an improved technique to obtain larger spectrum broadening and higher spectral intensity by employing mixed multiple thin plates with different thicknesses and materials. Furthermore, the spectrum has good stability, which is superior to that of the spectrum induced by the traditional single filament in bulk material. Our approach offers a route towards simple and stable SC generation for potential applications.