Rhizosphere protists are key determinants of plant health
Wu Xiong,
Yuqi Song,
Keming Yang,
Yian Gu,
Zhong Wei,
George A. Kowalchuk,
Yangchun Xu,
Alexandre Jousset,
Qirong Shen,
Stefan Geisen
Affiliations
Wu Xiong
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University
Yuqi Song
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University
Keming Yang
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University
Yian Gu
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University
Zhong Wei
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University
George A. Kowalchuk
Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University
Yangchun Xu
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University
Alexandre Jousset
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University
Qirong Shen
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University
Stefan Geisen
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University
Abstract Background Plant health is intimately influenced by the rhizosphere microbiome, a complex assembly of organisms that changes markedly across plant growth. However, most rhizosphere microbiome research has focused on fractions of this microbiome, particularly bacteria and fungi. It remains unknown how other microbial components, especially key microbiome predators—protists—are linked to plant health. Here, we investigated the holistic rhizosphere microbiome including bacteria, microbial eukaryotes (fungi and protists), as well as functional microbial metabolism genes. We investigated these communities and functional genes throughout the growth of tomato plants that either developed disease symptoms or remained healthy under field conditions. Results We found that pathogen dynamics across plant growth is best predicted by protists. More specifically, communities of microbial-feeding phagotrophic protists differed between later healthy and diseased plants at plant establishment. The relative abundance of these phagotrophs negatively correlated with pathogen abundance across plant growth, suggesting that predator-prey interactions influence pathogen performance. Furthermore, phagotrophic protists likely shifted bacterial functioning by enhancing pathogen-suppressing secondary metabolite genes involved in mitigating pathogen success. Conclusions We illustrate the importance of protists as top-down controllers of microbiome functioning linked to plant health. We propose that a holistic microbiome perspective, including bacteria and protists, provides the optimal next step in predicting plant performance. Video Abstract