Innovative Biosystems and Bioengineering (Jan 2025)
The Effect of Lyophilized and Frozen Umbilical Cord Cryoextract on L929 Cell Culture
Abstract
Background. The human umbilical cord is a promising source of biologically active substances with regenerative properties. However, the potential of lyophilized cryoextract from the umbilical cord for regenerative medicine, which could facilitate storage and transportation, remains unexplored. Therefore, it is important to study the effect of such cryoextracts using a cellular model. Objective. To evaluate the effect of lyophilized and frozen umbilical cord cryoextracts on the L929 cell line to assess their therapeutic potential. Methods. This study was conducted on L929 cell cultures. Cryoextracts from the human umbilical cord were obtained through cryoextraction and lyophilized forms at -80 and -20 °C. These extracts were added to Dulbecco's Modified Eagle Medium (DMEM) at three concentrations: 0.1, 0.5, and 1.0 mg/ml. The control groups included cells cultured in DMEM with and without fetal bovine serum. Cell morphology and monolayer confluency were observed. To assess the impact of the cryoextracts, several assays were performed: cell viability (adhesion), migration activity (scratch test), pinocytosis activity (neutral red uptake assay), metabolic activity (MTT assay), and (proliferation) population doubling time. Results. The addition of umbilical cord cryoextract and its lyophilized form at -80 °C was non-toxic to the cells. The most effective concentration was 0.1 mg/ml, which significantly stimulated cell adhesion and proliferation compared to the culture medium without fetal serum. The lyophilized cryoextract at -20 °C did not enhance cell viability but did increase pinocytosis activity. Conclusions. These findings suggest that umbilical cord cryoextract and its lyophilized form at -80 °C can be used as growth factors in cell line cultivation. The lyophilized cryoextract shows promise for use in conditions where specialized storage equipment is not available. However, the lyophilized form at -20 °C primarily stimulates pinocytosis activity and inhibits proliferation.