Agriculture (Apr 2025)

Nitrogen Fertiliser Reduction at Different Rice Growth Stages and Increased Density Improve Rice Yield and Quality in Northeast China

  • Wenjun Dong,
  • Yuhan Zhang,
  • Frederick Danso,
  • Jun Zhang,
  • Ao Tang,
  • Youhong Liu,
  • Kai Liu,
  • Ying Meng,
  • Lizhi Wang,
  • Zhongliang Yang,
  • Feng Jiao

DOI
https://doi.org/10.3390/agriculture15080892
Journal volume & issue
Vol. 15, no. 8
p. 892

Abstract

Read online

Rice yield and quality decline due to excessive fertiliser use is problematic in China. To increase rice grain filling and improve rice yield and quality, a nitrogen reduction and density increase study in 2023 and 2024 was imposed on a long-term experimental field. The four treatments adopted for the study were normal nitrogen and normal density (CK), normal nitrogen and increased density (NN+ID), reduced nitrogen in panicle fertiliser and increased density (RPN+ID), and reduced nitrogen in basal fertiliser and increased density (RBN+ID). RPN+ID and RBN+ID, respectively, produced a 3.0% and 5.1% higher yield than CK in both years. The mean grain filling rate (Va) of superior grains in RBN+ID increased by 12.5%, while the mean grain filling rate (Va) of inferior grains in the RPN+ID treatment increased by 4.2% with respect to CK. RPN+ID caused 0.4%, 9.6%, and 13.3% decline in the brown rice rate, chalkiness degree, and chalkiness rate, respectively, while RBN+ID triggered 0.4%, 7.2%, and 11.0% decline in the brown rice rate, chalkiness degree, and chalkiness rate, respectively. RPN+ID stimulated 4.2% and 3.1% increases in flavour and straight-chain amylose values, respectively. Whereas a 20% reduction in basal nitrogen fertiliser and a 32% increase in density improved the yield and appearance quality of rice, a 20% reduction in nitrogen fertiliser at the panicle stage and a 32% increase in density promoted a higher steaming flavour quality. Therefore, an appropriate reduction in nitrogen fertiliser while simultaneously increasing rice density has a significant impact on rice quality, fertiliser pollution reduction, and is a theoretical basis for rice yield and quality improvement in Northeast China.

Keywords