IEEE Access (Jan 2021)

Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction

  • Ali Omran Al-Sulttani,
  • Mustafa Al-Mukhtar,
  • Ali B. Roomi,
  • Aitazaz Ahsan Farooque,
  • Khaled Mohamed Khedher,
  • Zaher Mundher Yaseen

DOI
https://doi.org/10.1109/access.2021.3100490
Journal volume & issue
Vol. 9
pp. 108527 – 108541

Abstract

Read online

An accurate prediction of water quality (WQ) related parameters is considered as pivotal decisive tool in sustainable water resources management. In this study, five different ensemble machine learning (ML) models including Quantile regression forest (QRF), Random Forest (RF), radial support vector machine (SVM), Stochastic Gradient Boosting (GBM) and Gradient Boosting Machines (GBM_H2O) were developed to predict the monthly biochemical oxygen demand (BOD) values of the Euphrates River, Iraq. For this aim, monthly average data of water temperature (T), Turbidity, pH, Electrical Conductivity (EC), Alkalinity (Alk), Calcium (Ca), chemical oxygen demand (COD), Sulfate (SO4), total dissolved solids (TDS), total suspended solids (TSS), and BOD measured for ten years period were used in this study. The performances of these standalone models were compared with integrative models developed by coupling the applied ML models with two different feature extraction algorithms i.e., Genetic Algorithm (GA) and Principal Components Analysis (PCA). The reliability of the applied models was evaluated based on the statistical performance criteria of determination coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe model efficiency coefficient (NSE), Willmott index (d), and percent bias (PBIAS). Results showed that among the developed models, QRF model attained the superior performance. The performance of the evaluated models presented in this study proved that the developed integrative PCA-QRF model presented much better performance compared with the standalone ones and with those integrated with GA. The statistical criteria of R2, RMSE, MAE, NSE, d, and PBIAS of PCA-QRF were 0.94, 0.12, 0.05, 0.93, 0.98, and 0.3, respectively.

Keywords