Communications Physics (Jul 2025)
Flat bands on a spherical surface from Landau levels to giant-quantum-number orbitals
Abstract
Abstract Flat bands result in a divergent density of states and high sensitivity to interactions in physical systems. While such bands are well known in systems under magnetic fields, their realization and behavior in zero-field settings remain largely unexplored. Here we compare the behavior of electrons confined to a single flat band on the surface of a sphere to those in flat bands under a magnetic field. The zero-field flat band exhibits an additional C(2) symmetry, which causes electrons to symmetrically cluster on opposite sides of the sphere’s center when a trapping potential is introduced, resulting in a unique form of long-range “entanglement”. To explore these findings experimentally, we propose a feasible setup to explore the unique properties of zero-field flat bands on spherical substrates, offering a promising route for studying interaction-driven states in spherical geometry without external fields.