Forum of Mathematics, Sigma (Jan 2020)

THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUND

  • ANDREAS DEUCHERT,
  • SIMON MAYER,
  • ROBERT SEIRINGER

DOI
https://doi.org/10.1017/fms.2020.17
Journal volume & issue
Vol. 8

Abstract

Read online

We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density $\unicode[STIX]{x1D70C}$ and inverse temperature $\unicode[STIX]{x1D6FD}$ differs from the one of the noninteracting system by the correction term $4\unicode[STIX]{x1D70B}\unicode[STIX]{x1D70C}^{2}|\ln \,a^{2}\unicode[STIX]{x1D70C}|^{-1}(2-[1-\unicode[STIX]{x1D6FD}_{\text{c}}/\unicode[STIX]{x1D6FD}]_{+}^{2})$. Here, $a$ is the scattering length of the interaction potential, $[\cdot ]_{+}=\max \{0,\cdot \}$ and $\unicode[STIX]{x1D6FD}_{\text{c}}$ is the inverse Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity. The result is valid in the dilute limit $a^{2}\unicode[STIX]{x1D70C}\ll 1$ and if $\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D70C}\gtrsim 1$.

Keywords