Atmosphere (Jun 2025)
Understanding the Impact of Climatic Events on Optimizing Agricultural Production in Northeast China
Abstract
Climatic events are expected to significantly impact global agricultural production, with China being particularly vulnerable. Research in China emphasizes the urgent need for sustainable agricultural practices that address climate change, implement effective management strategies to mitigate the impacts of climatic events, and ensure food security. Therefore, this study examines the impact of climatic events on agricultural production optimization in Northeast China. To complete this objective, this study uses Method-of-Moments Quantile Regression (MM-QR) and data from 2003 to 2020. The main findings reveal that climatic factors, such as the Standardized Precipitation Index (SPI) and High-Temperature Days (HTDs), have a more pronounced effect on agricultural outcomes at higher production levels, particularly for larger producers. In addition, machinery power (TPAM) enhances productivity. Its role is more focused on risk mitigation than on expanding production. Insurance payouts (AIPE) increase grain production capacity at higher quantiles, while fertilizer use (FEU) has diminishing returns on capacity but encourages planting. Granger causality tests further demonstrate that management factors—such as machinery, irrigation, and insurance—play a more significant role in shaping agricultural outcomes than extreme climatic events. To improve agricultural sustainability in the context of climate change, policy recommendations include promoting climate-resilient crops, investing in smart irrigation systems, expanding affordable agricultural insurance, and encouraging sustainable fertilizer use through incentives and training. These strategies can help mitigate climate risks, enhance productivity, and reduce the environmental impact of agricultural activities.
Keywords