Energies (Mar 2025)

Dual-Layer Energy Management Strategy for a Hybrid Energy Storage System to Enhance PHEV Performance

  • Haobin Jiang,
  • Yang Zhao,
  • Shidian Ma

DOI
https://doi.org/10.3390/en18071667
Journal volume & issue
Vol. 18, no. 7
p. 1667

Abstract

Read online

Plug-in hybrid electric vehicles (PHEVs) typically employ batteries with relatively small capacities due to constraints on chassis space and vehicle cost. Consequently, under conditions such as acceleration and hill climbing, these vehicles often experience high-current battery discharges, which can significantly compromise the battery’s lifespan. To address this issue, this paper focuses on a plug-in hybrid passenger vehicle, introducing supercapacitors to form a hybrid energy storage system (HESS) in conjunction with the PHEV battery, and it proposes a dual-layer energy management strategy for PHEVs. First, a PHEV model is developed, and a rule-based energy management strategy is designed. By conducting simulation comparisons of the CLTC under three control rules with different thresholds, the strategy yielding the lowest fuel consumption is selected, and its battery discharge characteristics are analyzed. Subsequently, the required power parameters of the supercapacitor are calculated, and, taking chassis space constraints into account, the number and specifications of the supercapacitors are determined. Subsequently, a dual-layer energy distribution strategy for PHEVs equipped with supercapacitors is proposed. In the upper layer, an equivalent fuel consumption minimization method is applied to optimize the torque distribution between the engine and the motor, while the lower layer employs a rule-based strategy for power allocation between the battery and the supercapacitor. A proportional feedback factor is introduced for the real-time adjustment of the engine and motor torque distribution, and simulations under the CLTC are conducted to evaluate the PHEV’s torque distribution and fuel consumption. The results indicate that the dual-layer energy management strategy reduces the duration of high-current battery discharge in the supercapacitor-equipped PHEV by 73.61%, decreases the peak current by 30.76%, and lowers the overall vehicle fuel consumption by 5%. Unlike other studies, this paper analyzes and calculates the specifications, dimensions, and quantity of supercapacitors based on the available chassis space of the PHEV passenger car. The results demonstrate that the designed supercapacitor array effectively mitigates the high-current discharge of the PHEV battery, and the proposed dual-layer energy management strategy is capable of reducing the overall fuel consumption of the vehicle.

Keywords